
On-demand RDF to Relational Query Translation in
Samizdat RDF Store

Dmitry Borodaenko
Belarusian State University of Informatics and Radioelectronics

6 Brovki st., Minsk, Belarus
Email: angdraug@debian.org

Abstract—This paper presents an algorithm for on-demand
translation of RDF queries that allows to map any relational
data structure to RDF model, and to perform queries over a
combination of mapped relational data and arbitrary RDF tri ples
with a performance comparable to that of relational systems.
Query capabilities implemented by the algorithm include optional
and negative graph patterns, nested sub-patterns, and limited
RDFS and OWL inference backed by database triggers.

I. I NTRODUCTION

A wide range of solutions that map relational data to RDF
data model has accumulated to date [1]. There are several fac-
tors that make integration of RDF and relational data important
for the adoption of the Semantic Web. One reason, shared with
RDF stores based on a triples table, is the wide availability
of mature relational database implementations which had
seen decades of improvements in reliability, scalability,and
performance. Second is the fact that most of structured data
available online is backed by relational databases. This data
is not likely to be replaced by pure RDF stores in the near
future, so it has to be mapped in one way or another to become
available to RDF agents. Finally, properly normalized and
indexed application-specific relational database schema allows
a DBMS to optimize complex queries in ways that are not
possible for a tree of joins over a single triples table [12].

In the Samizdat open publishing engine, most of the data fits
into the relational model, with the exception of reified RDF
statements which are used in collaborative decision making
process [5] and require a more generic triple store. The need
for a generic RDF store with performance on par with a
relational database is the primary motivation behind the design
of Samizdat RDF storage module, which is different from both
triples table based RDF stores and relational to RDF mapping
systems. Unlike the former, Samizdat can run optimized SQL
queries over application-specific tables, but unlike the latter,
it is not limited by the relational database schema and can
fall back, within the same query, to a triples table for RDF
predicates that are not mapped to the relational model.

The following sections of this paper describe: targeted
relational data, database triggers required for RDFS and
OWL inference, query translation algorithm, update request
execution algorithm, details of algorithm implementationin
Samizdat, analysis of its performance, comparison with related
work, and outline for future work.

II. RELATIONAL DATA

Samizdat RDF storage module does not impose additional
restrictions on the underlying relational database schemabe-
yond the requirements of the SQL standard. Any legacy
database may be adapted for RDF access while retaining
backwards compatibility with existing SQL queries.

The adaptation process involves adding attributes, foreign
keys, tables, and triggers to the database to enable RDF
query translation and support optional features of Samiz-
dat RDF store, such as statement reification and inference
for rdfs:subClassOf, rdfs:subPropertyOf, and owl:Transitive-
Property rules.

Following database schema changes are required for all
cases:

• createrdfs:Resource superclass table with autogenerated
primary key;

• replace primary keys of mapped subclass tables with
foreign keys referencing therdfs:Resource table (existing
foreign keys may need to be updated to reflect this
change);

• register rdfs:subClassOf inference database triggers to
update the Resource table and maintain foreign keys
integrity on all changes in mapped subclass tables.

Following changes may be necessary to support optional
RDF mapping features:

• register database triggers for other cases ofrdfs:subClass-
Of entailment;

• create triples table (required to represent non-relational
RDF data and RDF statement reification);

• add subproperty qualifier attributes referencing property
URIref entry in therdfs:Resource table for each attribute
mapped to a superproperty;

• create transitive closure tables, registerowl:TransitivePro-
perty inference triggers.

III. I NFERENCE ANDDATABASE TRIGGERS

Samizdat RDF storage module implements entailment
rules for following RDFS predicates and OWL classes:
rdfs:subClassOf, rdfs:subPropertyOf, owl:TransitiveProperty.
Database triggers are used to minimize impact of RDFS and
OWL inference on query performance:

rdfs:subClassOf inference triggers are invoked on every
insert into and delete from a subclass table. When a tuple



1: if onew = sω or 〈onew , τ, sω〉 ∈ G+
τ then

2: stop ⊲ refuse to create a cycle inGτ

3: end if
4: Gτ ← G′

τ ⊲ apply ω

5: if ω ∈ {update, delete} then
6: G+

τ ← G+
τ \ {〈s, τ, o〉 | (s = sω ∨ 〈s, τ, sω〉 ∈ G+

τ ) ∧
〈sω, τ, o〉 ∈ G+

τ } ⊲ remove obsolete arcs fromG+
τ

7: end if
8: if ω ∈ {insert, update} then ⊲ add new arcs toG+

τ

9: G+
τ ← G+

τ ∪ {〈sω, τ, o〉 | o = onew ∨ 〈onew , τ, o〉 ∈
G+

τ }
10: G+

τ ← G+
τ ∪{〈s, τ, o〉 | 〈s, τ, sω〉 ∈ G+

τ ∧ 〈sω, τ, o〉 ∈
G+

τ }
11: end if

Fig. 1. Update transitive closure

without a primary key is inserted,1 a template tuple is inserted
into superclass table and the produced primary key is added
to the new subclass tuple. Delete operation is cascaded to all
subclass and superclass tables.

rdfs:subPropertyOf inference is performed during query
translation, with help of a stored procedure that returns the
attribute value when subproperty qualifier attribute is set, and
NULL otherwise.

owl:TransitiveProperty inference uses a separate transitive
closure table for each relational attribute mapped to a transitive
property. Transitive closure tables are maintained by triggers
invoked on each insert, update, and delete operation involving
such an attribute.

The transitive closure update algorithm is presented in
Fig. 1. The input to the algorithm is:

• directed labeled graphG = 〈N, A〉 whereN is a set of
nodes representing RDF resources andA is a set of arcs
a = 〈s, p, o〉 representing RDF triples;

• transitive propertyτ ;
• subgraphGτ ⊆ G such that:

aτ = 〈s, p, o〉 ∈ Gτ ⇐⇒ aτ ∈ G ∧ p = τ ; (1)

• graphG+
τ containing transitive closure ofGτ ;

• update operationω ∈ {insert, update, delete} and its
parametersaold = 〈sω , τ, oold〉, anew = 〈sω, τ, onew〉
such that:

G′

τ = (Gτ \ {aold}) ∪ {anew} . (2)

The algorithm transformsG+
τ into a transitive closure ofG′

τ .
The algorithm assumes thatGτ is and should remain acyclic.

IV. QUERY PATTERN TRANSLATION

Class structure of the Samizdat RDF storage module is as
follows. External API is provided by theRDF class. RDF

1Insertion into subclass table with explicit primary key is used in two-step
resource insertion during execution of RDF update command (described in
section V).

?msg

?stmtdc:relation

?tag ?date

?rating

?parent

?original lang

?translation

?translationlang

rdf:subject
rdf:predicate

rdf:object dc:d
ate

s:rating

dct:isPartOf

dc:language

s:isTranslationOf

dc:language

Π

N

Ω

Fig. 2. Graph patternΨ for the example query

storage configuration as described in section II is encapsulated
in RDFConfig class. The concrete syntax of Squish [4], [8]
and SQL is abstracted intoSquishQuery and its subclasses.
The query pattern translation algorithm is implemented by the
SqlMapper class.

The input to the algorithm is as follows:

• mappings M = 〈Mrel, Mattr, Msub, Mtrans〉 where
Mrel : P → R, Mattr : P → Φ, Msub : P → S,
Mtrans → T ; P is a set of mapped RDF properties,
R is a set of relations,Φ is a set of relation attributes,
S ⊂ P is a subset of RDF properties that have configured
subproperties,T ⊂ R is a set of transitive closures (as
described in sections II and III);

• graph patternΨ = 〈Ψnodes, Ψarcs〉 = Π∪N ∪Ω, where
Π, N , and Ω are main (”must bind”), negative (”must
not bind”), and optional (”may bind”) graph patterns
respectively, such thatΠ, N , andΩ share no arcs, and
Π, Π ∪N andΠ ∪Ω are joint graphs.2

• global filter conditionFg ∈ F and local filter conditions
Fc : Ψarcs → F whereF is a set of all literal conditions
expressible in the query language syntax.

For example, consider the following Squish query and its
graph patternΨ presented in Fig. 2.
SELECT ?msg
WHERE (rdf::predicate ?stmt dc::relation)

(rdf::subject ?stmt ?msg)
(rdf::object ?stmt ?tag)
(dc::date ?stmt ?date)
(s::rating ?stmt ?rating

FILTER ?rating >= :threshold)
EXCEPT (dct::isPartOf ?msg ?parent)
OPTIONAL (dc::language ?msg ?original_lang)

(s::isTranslationOf ?msg ?translation)
(dc::language ?translation ?translation_lang)

LITERAL ?original_lang = :lang
OR ?translation_lang = :lang

GROUP BY ?msg
ORDER BY max(?date) DESC

The output of the algorithm is a join expressionF and
condition W ready for composition intoFROM and WHERE
clauses of an SQLSELECT statement.

In the algorithm description below,id(r) is used to denote
primary key of relationr ∈ R, andρ(n) is used to denote value

2Arcs with the same subject, object, and predicate but different bind mode
are treated as distinct.



of id(Resource) for non-variable noden ∈ Ψnodes where
such value is known during query translation.3

Key steps of the query pattern translation algorithm corre-
spond to the following private methods ofSqlMapper:
label_pattern_components: Label every connected

component ofΠ, N , andΩ with different colorsK such that
KΠ : Πnodes → K, KN : Nnodes → K, KΩ : Ωnodes →
K, K(n) = KΠ(n) ∪ KN(n) ∪ KΩ(n). The Two-pass Con-
nected Component Labeling algorithm [11] is used with a
special case to exclude nodes present inΠ from neighbour
lists while labelingN and Ω. The special case ensures that
parts ofN and Ω which are only connected through a node
in Π are labeled with different colors.
map_predicates: Map each arcc = 〈s, p, o〉 ∈ Ψarcs

to the relational data model according toM : define mapping
M

pos
attr : Ψarcs × Ψnodes → Φ such thatMpos

attr(c, s) =
id(Mrel(p)), Mpos

attr(c, o) = Mattr(p); replace each unmapped
arc with its reification and map the resulting arcs in the same
manner;4 for each arc labeled with a subproperty predicate,
add an arc mapped to the subproperty qualifier attribute. For
each noden ∈ Ψnodes, find adjacent arcsΨn

nodes = {〈s, p, o〉 |
n ∈ {s, o}} and determine its binding modeβnode : Ψnodes →
{Π, N, Ω} such thatβnode(n) = max(βarc(c)∀c ∈ Ψn

nodes)
whereβarc(c) reflects which of the graph patterns{Π, N, Ω}
contains arcc, and the order of precedence used bymax is
Π > N > Ω.
define_relation_aliases: Map each node inΨ

to one or more relation aliasesa ∈ A according to the
algorithm described in Fig. 3. The algorithm produces map-
ping Ca : Ψarcs → A which links every arc inΨ to an
alias, and mappingsA = 〈Arel, Anode, Aβ , Afilter〉 where
Arel : A → R, Anode : A → Ψnodes, Aβ : A → {Π, N, Ω},
Afilter : A → F ) which record relation, node, bind mode,
and a filter condition for each alias.
transform: Define bindingsB : Ψnodes → B whereB =
{{〈a, f〉 | a ∈ A, f ∈ Φ}} of graph pattern nodes to sets of
pairs of relation aliases and attributes, such that

〈a, f〉 ∈ B(n) ⇐⇒ ∃c ∈ Ψn
arcs

Ca(c) = a, M
pos
attr(c, n) = f .

(3)

Transform graph patternΨ into relational query graph
Q = 〈A, J〉 where nodesA are relation aliases defined earlier
and edgesJ = {〈b1, b2, n〉 | b1 = 〈a1, f1〉 ∈ B(n), b2 =
〈a2, f2〉 ∈ B(n), a1 6= a2} are join conditions. Ground non-
variable nodes according to the algorithm defined in Fig. 4.
Record list of grounded nodesG ⊆ Ψnodes such that

n ∈ G ⇐⇒ n ∈ Fg ∨ ∃〈b1, b2, n〉 ∈ J

∨ ∃b ∈ B(n)∃a ∈ A b ∈ Afilter(a) .
(4)

Transformation of the example query presented above will
result in a relational query graph in Fig. 5.

3E.g. Samizdat usessite-ns/resource-id notation for internal resource
URIrefs.

4M is expected to map reification properties to the triples table.

1: for all n ∈ Ψnodes do
2: for all c = 〈s, p, o〉 ∈ Ψarcs | s = n ∧ Ca(c) = ∅ do
3: if ∃c′ = 〈s′, p′, o′〉 | n ∈ {s′, o′} ∧ Ca(c′) 6=
∅ ∧ Mrel(p

′) = Mrel(p) then
4: Ca(c)← Ca(c′) ⊲ Reuse the alias assigned to

an arc adjacent ton and mapped to the same relation
5: else ⊲ Create new alias
6: a = max(A) + 1; A← A ∪ {a}; Ca(c)← a

7: Anode(a)← n, Afilter(a)← ∅
8: if Mtrans(p) = ∅ then ⊲ Use base relation
9: Arel(a)←Mrel(p)

10: Aβ(a)← βnode(n)
11: else ⊲ Use transitive closure
12: Arel(a)←Mtrans(p)
13: Aβ(a)← βarc(c)
14: ⊲ Use arc’s bind mode instead of node’s
15: end if
16: end if
17: end for
18: end for
19: for all c ∈ Ψarcs do
20: Afilter(Ca(c))← Afilter(Ca(c)) ∪ Fc(c)
21: ⊲ Add arc filter to the linked alias filters
22: end for

Fig. 3. Define relation aliases

1: ∃b = 〈a, f〉 ∈ B(n) ⊲ Take any binding ofn
2: if n is an internal resource andρ(n) = i then
3: Afilter(a)← Afilter(a) ∪ (b = i)
4: else if n is a query parameter or a literalthen
5: Afilter(a)← Afilter(a) ∪ (b = n)
6: else if n is a URIref then ⊲ Add a join to a URIref tuple

in Resource relation
7: A ← A ∪ {ar}; Anode(ar) = n; Arel(ar) =

Resource; Aβ(ar) = βnode(n)
8: B(n) ← B(n) ∪ 〈ar, id(Resource)〉; J ← J ∪
{〈b, 〈ar, id(Resource)〉, n〉}

9: Afilter(ar) = Afilter(ar) ∪ (〈ar, literal〉 = f ∧
〈ar, uriref〉 = t ∧ 〈ar, label〉 = n)

10: end if

Fig. 4. Ground non-variable nodes

b a c

d

g

f

e

a.id = b.id
?stmt

a.subject = c.id
?msg

a.subject =
d.id

?m
sg

a.p
re

dic
ate

=
g.i

d

dc
:re

lat
ion

c.part of subproperty
= f.id

s:is
Transla

tionOf

c.part of = e.id

?translation

P1

Fig. 5. Relational query graphQ for the example query



generate_tables_and_conditions: Produce or-
dered connected minimum edge-disjoint tree coverP for rela-
tional query graphQ such that∀Pi ∈ P ∀j = 〈bj1, bj2, nj〉 ∈
Pi ∀k = 〈bk1, bk2, nk〉 ∈ Pi:

K(nj) ∩K(nk) 6= ∅ , (5)

βnode(nj) = βnode(nk) = βtree(Pi) , (6)

starting withP1 such thatβtree(P1) = Π (it follows from
definitions of Ψ and transform that P1 is the only such
tree and covers all join conditions〈b1, b2, n〉 ∈ J such that
βnode(n) = Π). EncodeP1 as the root inner join. Encode other
trees with at least one edge as subqueries. Left join subqueries
and aliases representing roots of zero-length trees into join
expressionF . For eachPi such thatβtree(Pi) = N , find a
binding b = 〈a, f〉 ∈ Pi such thata ∈ P1 ∩ Pi and add (b IS
NULL) condition toW . For each non-grounded noden 6∈ G

such that〈a, f〉 ∈ B(n) ∧ a ∈ P1, add (b IS NOT NULL)
condition toW if βnode(n) = Π, or (b IS NULL) condition
if βnode(n) = N . Add Fg to W .

Translation of the example query presented earlier will
result in the following SQL:
SELECT DISTINCT a.subject, max(b.published_date)
FROM Statement AS a
INNER JOIN Resource AS b ON (a.id = b.id)
INNER JOIN Resource AS c ON (a.subject = c.id)
INNER JOIN Message AS d ON (a.subject = d.id)
INNER JOIN Resource AS g ON (a.predicate = g.id)

AND (g.literal = ’false’ AND g.uriref = ’true’
AND g.label = ’http://purl.org/dc/elements/1.1/relation’)

LEFT JOIN (
SELECT e.language AS _field_b, c.id AS _field_a
FROM Message AS e
INNER JOIN Resource AS f ON (f.literal = ’false’

AND f.uriref = ’true’ AND f.label =
’http://www.nongnu.org/samizdat/rdf/schema#isTranslationOf’)

INNER JOIN Resource AS c ON (c.part_of_subproperty = f.id)
AND (c.part_of = e.id)

) AS _subquery_a ON (c.id = _subquery_a._field_a)
WHERE (b.published_date IS NOT NULL)

AND (a.object IS NOT NULL) AND (a.rating IS NOT NULL)
AND (c.part_of IS NULL) AND (a.rating >= ?)
AND (d.language = ? OR _subquery_a._field_b = ?)

GROUP BY a.subject ORDER BY max(b.published_date) DESC

V. UPDATE COMMAND EXECUTION

Update command uses the same graph pattern structure
as a query, and additionally defines a set∆ ⊂ Ψnodes of
variables representing new RDF resources and a mapping
U : Ψnodes → L of variables to literal values. Execution of
an update command starts with query pattern translation using
the algorithm described in section IV. The variablesΨ, A, Q,
etc. produced by pattern translation are used in the subsequent
stages as described below:

1) Construct node values mappingV : Ψnodes → L
using the algorithm defined in Fig. 6. Record resources
inserted into the database during this stage in∆new ⊂
Ψnodes (it follows from the algorithm definition that
∆ ⊆ ∆new).

2) For each aliasa ∈ A, find a subset of graph pattern
Ψa

arcs ⊆ Ψarcs such thatc ∈ Ψa
arcs ⇐⇒ Ca(c) = a,

select a key nodek such that∃c = 〈k, p, o〉 ∈ Ψa
arcs,

and collect a mapDa : Φ → L of fields to values

1: for all n ∈ Ψnodes do
2: if n is an internal resource andρ(n) = i then
3: V (n)← i

4: else if n is a query parameter or a literalthen
5: V (n)← n

6: else if n is a variablethen
7: if ∄c = 〈n, p, o〉 ∈ Ψarcs then
8: ⊲ If found only in object position
9: V (n)← U(n)

10: else
11: if n 6∈ ∆ then
12: V (n)← SquishSelect(n, Ψn∗)
13: end if
14: if V (n) = ∅ then
15: Insertn into Resource relation
16: V (n)← ρ(n)
17: ∆new ← ∆new ∪ n

18: end if
19: end if
20: else if n is a URIref then
21: Selectn from Resource relation, insert if missing
22: V (n)← ρ(n)
23: end if
24: end for

Fig. 6. Determine node values.Ψn∗ is a subgraph ofΨ reachable fromn.
SquishSelect(n, Ψ) finds a mapping of variablen that satisfies patternΨ.

such that∀c = 〈s, p, o〉 ∈ Ψa
arcs ∃Da(o) = V (o). If

k ∈ ∆new andArel(a) 6= Resource, transformDa into
an SQLINSERT into Arel(a) with explicit primary key
assignmentidk(Arel(a))← V (k). Otherwise, transform
Da into anUPDATE statement on the tuple inArel(a)
for which idk(Arel(a)) = V (k).

3) Execute the SQL statements produced in the previous
stage inside the same transaction in the order that
resolves their mutual references.

VI. I MPLEMENTATION

The algorithms described in previous sections are imple-
mented by the Samizdat RDF storage module, which is used
as the primary means of data access in the Samizdat open pub-
lishing system. The module is written in Ruby programming
language, supported by several triggers written in procedural
SQL. The module and the whole Samizdat engine are available
under GNU General Public License.

Samizdat exposes all RDF resources underpinning the struc-
ture and content of the site. HTTP request with a URL of any
internal resource yields a page with detailed information about
the resource and its relation with other resources. Furthermore,
Samizdat provides a graphical interface that allows to compose
arbitrary Squish queries.5 Queries may be published so that
other users may modify and reuse them, results of a query
may be accessed either as plain HTML or as an RSS feed.

5Complexity of user queries is limited to a configurable maximum number
of triples in the graph pattern to prevent abuse.



VII. E VALUATION OF RESULTS

Samizdat performance was measured using Berlin SPARQL
Benchmark (BSBM) [2], with following variations: a func-
tional equivalent of BSBM test driver was implemented in
Ruby and Squish (instead of Java and SPARQL); the test
platform included Intel Core 2 Duo (instead of Quad) clocked
at the same frequency, and 2GB of memory (instead of 8GB).
In this environment, Samizdat was able to process 25287
complete query mixes per second (QMpH) on a dataset with
1M triples, and achieved 18735 QMpH with 25M triples, in
both cases exceeding figures for all RDF stores reported in [2].

In production, Samizdat was able to serve without conges-
tion peak loads of up to 5K hits per hour for a site with
a dataset sized at 100K triples in a shared VPS environment.
Regeneration of the site frontpage on the same dataset executes
997 Squish queries and completes in 7.7s, which is comparable
to RDBMS-backed content management systems.

VIII. C OMPARISON WITH RELATED WORK

As mentioned in section I, there exists a wide range of
solutions for relational to RDF mapping. Besides Samizdat,
the approach based on automatic on-demand translation of
RDF queries into SQL is also implemented by Federate [9],
D2RQ [3], and Virtuoso [7].

While being one of the first solutions to provide on-demand
relational to RDF mapping, Samizdat remains one of the most
advanced in terms of query capabilities. Its single largest
drawback is lack of compatibility with SPARQL; in the same
time, in some regards it exceeds capabilities of other solutions.

The alternative that is closest to Samizdat in terms of
query capabilities is Virtuoso RDF Views: it is the only
other relational-to-RDF mapping solution that provides par-
tial RDFS and OWL inference, aggregation, and an update
language. Still, there are substantial differences between these
two projects. First of all, Samizdat RDF store is a small
module (1000 lines of Ruby and 200 lines of SQL) that
can be used with a variety of RDBMSes, while Virtuoso
RDF Views is tied to its own RDBMS. Virtuoso doesn’t
support implicit statement reification, although its design is
compatible with this feature. Finally, Virtuso relies on SQL
unions for queries with unspecified predicates and RDFS and
OWL inference. While allowing for greater flexibility than
the database triggers described in section III, iterative union
operation has a considerable impact on query performance.

IX. FUTURE WORK

Since the SPARQL Recommendation has been published
by W3C [10], SPARQL support has been at the top of the
Samizdat RDF store to-do list. SPARQL syntax is considerably
more expressive than Squish and will require some effort to
implement in Samizdat, but, since design of the implementa-
tion separates syntactic layer from the query translation logic,
the same algorithms as described in this paper can be used
to translate SPARQL patterns to SQL with minimal changes.
Most substantial changes are expected to be required for the

explicit grouping of optional graph patterns and the associated
filter scope issues [6].

Samizdat RDF store should be made more adaptable to a
wider variety of problem domains. Query translation algorithm
should be augmented to translate an ambiguously mapped
query (including queries with unspecified predicates) to a
union of alternative interpretations. Mapping of relational
schema should be generalized, including support for multi-
part keys and more generic stored procedures for reification
and inference. Standard RDB2RDF mapping should be imple-
mented when W3C publishes a specification to that end.

X. CONCLUSIONS

The on-demand RDF to relational query translation al-
gorithm described in this paper utilizes existing relational
databases to their full potential, including indexing, trans-
actions, and procedural SQL, to provide efficient access to
RDF data. Implementation of this algorithm in Samizdat RDF
storage module has been tried in production environment and
demonstrated how Semantic Web technologies can be intro-
duced into an application serving thousands of users without
imposing additional requirements on hardware resources.

REFERENCES

[1] Auer, S., Dietzold, S. Lehman, J., Hellmann, S., Aumueller, D.: Triplify
– Light-Weight Linked Data Publication from Relational Databases.
WWW 2009, Madrid, Spain (2009)
http://www.informatik.uni-leipzig.de/∼auer/publication/triplify.pdf

[2] Bizer, C., Schultz, A.: The Berlin SPARQL Benchmark. International
Journal On Semantic Web and Information Systems (IJSWIS), Volume
5, Issue 2 (2009)
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/

[3] Bizer, C., Seaborne, A.: D2RQ - Treating non-RDF databases as virtual
RDF graphs. In: ISWC 2004 (posters)
http://www.wiwiss.fu-berlin.de/bizer/D2RQ/spec/

[4] Borodaenko, Dmitry: Accessing Relational Data with RDFQueries and
Assertions (April 2004)
http://samizdat.nongnu.org/papers/rel-rdf.pdf

[5] Borodaenko, Dmitry: Model for Collaborative Decision Making Based
on RDF Reification (April 2004)
http://samizdat.nongnu.org/papers/collreif.pdf

[6] Cyganiak, R.: A relational algebra for SPARQL. Technical Report HPL-
2005-170, HP Labs (2005)
http://www.hpl.hp.com/techreports/2005/HPL-2005-170.html

[7] Erling, O., Mikhailov I.: RDF support in the Virtuoso DBMS. In:
Proceedings of the 1st Conference on Social Semantic Web, volume
P-113 of GI-Edition – Lecture Notes in Informatics (LNI), ISSN 1617-
5468. Bonner Köllen Verlag (2007)
http://virtuoso.openlinksw.com/dav/wiki/Main/VOSArticleRDF

[8] Miller, Libby, Seaborne, Andy, Reggiori, Alberto: Three Implementa-
tions of SquishQL, a Simple RDF Query Language. In: Horrocks, I.,
Hendler, J. (Eds) ISWC 2002. LNCS vol. 2342, pp. 423-435. Springer,
Heidelberg (2002)
http://ilrt.org/discovery/2001/02/squish/

[9] Prud’hommeaux, Eric: RDF Access to Relational Databases (2003)
http://www.w3.org/2003/01/21-RDF-RDB-access/

[10] Prud’hommeaux, Eric, Seaborne, Andy: SPARQL Query Language for
RDF. W3C Recommendation (January 2008)
http://www.w3.org/TR/rdf-sparql-query/

[11] Shapiro, L., Stockman, G: Computer Vision, pp. 69-73. Prentice-Hall
(2002)
http://www.cse.msu.edu/∼stockman/Book/2002/Chapters/ch3.pdf

[12] Schmidt, M., Hornung, T., Küchlin, N., Lausen, G., Pinkel, C.: An
Experimental Comparison of RDF Data Management Approachesin a
SPARQL Benchmark Scenario. In: A. Sheth et al. (Eds.) ISWC 2008.
LNCS vol. 5318, pp. 82-97. Springer, Heidelberg (2008)
http://www.informatik.uni-freiburg.de/∼mschmidt/docs/sp2bexp.pdf

http://www.informatik.uni-leipzig.de/~auer/publication/triplify.pdf
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/
http://www.wiwiss.fu-berlin.de/bizer/D2RQ/spec/
http://samizdat.nongnu.org/papers/rel-rdf.pdf
http://samizdat.nongnu.org/papers/collreif.pdf
http://www.hpl.hp.com/techreports/2005/HPL-2005-170.html
http://virtuoso.openlinksw.com/dav/wiki/Main/VOSArticleRDF
http://ilrt.org/discovery/2001/02/squish/
http://www.w3.org/2003/01/21-RDF-RDB-access/
http://www.w3.org/TR/rdf-sparql-query/
http://www.cse.msu.edu/~stockman/Book/2002/Chapters/ch3.pdf
http://www.informatik.uni-freiburg.de/~mschmidt/docs/sp2b_exp.pdf

	Introduction
	Relational Data
	Inference and Database Triggers
	Query Pattern Translation
	Update Command Execution
	Implementation
	Evaluation of Results
	Comparison with Related Work
	Future Work
	Conclusions
	References

