On-demand RDF to Relational Query Translation in
Samizdat RDF Store

Dmitry Borodaenko
Belarusian State University of Informatics and Radioetadts
6 Brovki st., Minsk, Belarus
Email: angdraug@debian.org

Abstract—This paper presents an algorithm for on-demand II. RELATIONAL DATA

translation of RDF queries that allows to map any relational . . .
data structure to RDF model, and to perform queries over a Samizdat RDF storage module does not impose additional

combination of mapped relational data and arbitrary RDF tri ples r€strictions on the underlying relational database schieeaa
with a performance comparable to that of relational systems yond the requirements of the SQL standard. Any legacy
QUC;%W CaF)thilitieS i?plert'?ented bytthzalggrithrtfg include gﬂ’iIQrf;éic; database may be adapted for RDF access while retaining
and negative gra atterns, nested sub-patterns, and li TR Pt ;
RDFS a?nd OV\?L irr)1ferpence backed by datal?ase triggers. backwards Compatlblllty Wlt.h existing SQL querlles. .
The adaptation process involves adding attributes, fareig
keys, tables, and triggers to the database to enable RDF
. INTRODUCTION query translation and support optional features of Samiz-

A wide range of solutions that map relational data to RDFat RDF store, such as statement reification and inference

data model has accumulated to date [1]. There are several é)éo rg:? sﬂil:&Of rdfs: subPropertyOf, and owl: Transitive-

tors that make integration of RDF and relational data imgoart FpII YT d b h h ired f I

for the adoption of the Semantic Web. One reason, shared wit 0 F)W'ng atabase schema changes are required for a

RDF stores based on a triples table, is the wide availabili%‘;jlses')

of mature relational database implementations which hade createrdfs:Resource superclass table with autogenerated

seen decades of improvements in reliability, scalabikiyg primary key; _

performance. Second is the fact that most of structured dats replace primary keys of mapped subclass tables with

available online is backed by relational databases. Thia da foreign keys referencing thelifs: Resource table (existing

is not likely to be replaced by pure RDF stores in the near foreign keys may need to be updated to reflect this

future, so it has to be mapped in one way or another to become change); _ _

available to RDF agents. Finally, properly normalized and ¢ registerrdfs:subClassOf inference database triggers to

indexed application-specific relational database schéimasa update the Resource table and maintain foreign keys

a DBMS to optimize complex queries in ways that are not integrity on all changes in mapped subclass tables.

possible for a tree of joins over a single triples table [12]. Following changes may be necessary to support optional
In the Samizdat open publishing engine, most of the data fiRF mapping features:

into the relational model, with the exception of reified RDF « register database triggers for other casesisf subClass-

statements which are used in collaborative decision making Of entailment;

process [5] and require a more generic triple store. The need create triples table (required to represent non-relationa

for a generic RDF store with performance on par with a RDF data and RDF statement reification);

relational database is the primary motivation behind theégte « add subproperty qualifier attributes referencing property

of Samizdat RDF storage module, which is different from both ~ URIref entry in therdfs: Resource table for each attribute

triples table based RDF stores and relational to RDF mapping mapped to a superproperty;

systems. Unlike the former, Samizdat can run optimized SQL. create transitive closure tables, registat: TransitivePro-

queries over application-specific tables, but unlike theela perty inference triggers.

it is not limited by the relational database schema and can

fall back, within the same query, to a triples table for RDF 1. I NFERENCE ANDDATABASE TRIGGERS

predicates that are not mapped to the relational model. Samizdat RDF storage module implements entailment

The following sections of this paper describe: targetedles for following RDFS predicates and OWL classes:
relational data, database triggers required for RDFS ardfs:subClassOf, rdfs:subPropertyOf, owl: TransitiveProperty.
OWL inference, query translation algorithm, update regueBatabase triggers are used to minimize impact of RDFS and
execution algorithm, details of algorithm implementation OWL inference on query performance:

Samizdat, analysis of its performance, comparison wititeel rdfs:subClassOf inference triggers are invoked on every
work, and outline for future work. insert into and delete from a subclass table. When a tuple

1 if Opew = Sw OF (Onew, T, Sw) € G then P ey -~
2: stop > refuse to create a cycle i, /// ' \\n\
3 end if ! N 3 ™
]
4 Gy — G, > apply w , _ II
5. if w € {update, delete} then I o - __ v
6: GH — G\ {(s,7,0) | (s=15u V (5,7,580) € GF) A \\ , _ -~ detisPartOf @;\[— -~
(8w, T,0) € GI} > remove obsolete arcs froft N ~— o
7. end if &
8: if w € {insert,update} then > add new arcs t@7; ~<langya.
9: +G;“ — G U{(55,7,0) | 0= Onew V (Onew,T,0) € Foriginallang
G+ 1 n
10: G — GFu{(s,7,0) | (s,7,50) € GI A (54,T,0) € _
G+} Fig. 2. Graph pattern for the example query
i
11: end if

Fig. 1. Update transitive closure storage configuration as described in section Il is encapesl
in RDFConf i g class. The concrete syntax of Squish [4], [8]
and SQL is abstracted insqui shQuer y and its subclasses.
without a primary key is insertetla template tuple is inserted The query pattern translation algorithm is implementedHsgy t
into superclass table and the produced primary key is addegl Mapper class.
to the new subclass tuple. Delete operation is cascaded to alThe input to the algorithm is as follows:
subclass and superclass tables. _ o mappings M = (Myei, Mattr, Mgub, Mirans) Where
rdfssngrop_ertyOf inference is performed during query Me : P — R, My : P — ®, Moy : P — S,
translation, with help of a stored procedure that returres th
attribute value when subproperty qualifier attribute is aed
NULL otherwise.

Myans — T; P is a set of mapped RDF properties,
R is a set of relationsd is a set of relation attributes,
A) . S C P is a subset of RDF properties that have configured
owl: TransitiveProperty inference uses a separate transitive subproperties]T C R is a set of transitive closures (as
closure table for each relational attribute mapped to ssitian described in sections Il and I1I):
property. Transitive closure tables are maintained bygéig « graph patternt = (¥,,04es, Uares) = [IU N U Q, where
invoked on each insert, update, and delete operation imglv I, N, and Q are main ("must bind"), negative ("must
such an attribute. _ _ ~ not bind”), and optional ("may bind”) graph patterns
The transitive closure update algorithm is presented in respectively, such thdil, N, and) share no arcs, and

Fig. 1. The input to the algorithm is: I, TU N andIIUQ are joint graphg.
« directed labeled grapt’ = (N, A) where N is a set of o global filter conditionF, € F and local filter conditions
nodes representing RDF resources ani$ a set of arcs F.:V,... — F whereF is a set of all literal conditions
a = (s,p, o) representing RDF triples; expressible in the query language syntax.

« transitive propertyr;

For example, consider the following Squish query and its
e subgraphG,; C G such that:

graph patternl presented in Fig. 2.

SELECT ?msg
CLT:<S,p,O>€GT < a,€G Ap=7; (1) WHERE (rdf::predicate ?stnmt dc::relation)
(rdf::subject ?stnt ?nsQ)
(rdf::object ?stnt ?tag)

« graphG containing transitive closure af; (dc:-date ?stnt 2date)

« update operationv € {insert,update, delete} and its (s::rating ?stnt ?rating
arametersz _ < > _ < > FILTER ?rating >= :threshol d)
P old = {Sw;T,00ld)s Anew = \Sw;T,Onew EXCEPT (dct::isPartCf ?msg ?parent)

such that: OPTI ONAL (dc: : | anguage ?nsg ?ori gi nal _| ang)
(s::isTranslationO ?nmsg ?transl ation)
(dc::language ?translation ?translation_| ang)

Gfr = (GT \ {aold}) U {anew} . (2) LITERAL ?original _lang = :lang
OR ?translation_lang = :lang

GROUP BY ?nsg
ORDER BY nax(?date) DESC

The output of the algorithm is a join expressidh and
IV. QUERY PATTERN TRANSLATION condition W ready for composition intd-ROM and WHERE
%{auses of an SQISELECT statement.

T the algorithm description belovikl(r) is used to denote

primary key of relation- € R, andp(n) is used to denote value

The algorithm transform&’} into a transitive closure af”..
The algorithm assumes théat, is and should remain acyclic.

Class structure of the Samizdat RDF storage module is
follows. External API is provided by th&DF class. RDF

Linsertion into subclass table with explicit primary key &ed in two-step
resource insertion during execution of RDF update commaledcfibed in 2Arcs with the same subject, object, and predicate but eiffebind mode
section V). are treated as distinct.

of id(Resource) for non-variable nodex € ¥,,,4.s Where
such value is known during query translation.

Key steps of the query pattern translation algorithm corre
spond to the following private methods 8§l Mapper :

| abel pattern_conponents: Label every connected 4

component ofll, N, and2 with different colorsK such that
KH : Hnodes - KaKN : Nnodes - KaKQ : Qnodes -
K,K(n) =

special case to exclude nodes presentlifrom neighbour

1:
2:
3:

5:

Ku(n) U Ky(n) U Ko(n). The Two-pass Con- %
nected Component Labeling algorithm [11] is used with a7f

for all n € ¥, 4.5 dO
for all ¢ = (s,p,0) € Upres | s=1n A Cy(c
if 3¢ = (,p/,0) | n € {s,0} A
O AN Mypei(p') = Mrei(p) then
Co(c) < C,(c') > Reuse the alias assigned to
an arc adjacent te and mapped to the same relation
else > Create new alias
a=mazx(A)+1; A — AU {a}; Cy(c) —a
Anode(a) —n, Afilte'r (a) — @
if Mirans(p) =0 then > Use base relation

=0d

c’)

)
C.

lists while labelingN' and Q. The special case ensures that® Arer(a) — Mye(p)

parts of N and 2 which are only connected through a nodelo: Ap(a) — Brode(n) -

in II are labeled with different colors. : else > Use transitive closure
map_pr edi cat es: Map each are: = (s,p,0) € Ugpes 12 Arer(a) = Mirans(p)

to the relational data model according &é: define mapping ** Ap(a) — ﬁafc(c,) , ,

MP% . Wares X Wpoges — @ such that MP(c,s) = : > Use arc’s bind mode instead of node’s

id(M,e1(p)), MP25 (¢, 0) = Mayur(p); replace each unmapped®™ e_nd if

arc with its reification and map the resulting arcs in the samé end if

manner® for each arc labeled with a subproperty predicatel,7f end for

add an arc mapped to the subproperty qualifier attribute. FUF end for

each node; € W,,,4.., find adjacent arcg” , = {(s,p,0) | 1% forall ¢ & ¥, do

n € {s,o0}} and determine its binding Mo oze : Vpoges — 22 Afitter (Ca(c)) = Apitter (Ca(c)) U Fe(e)

(I, N, Q) such thatBnoge(n) = maz(fare(c) Ve € U7 .) 21 > Add arc filter to the linked alias filters
s LV, node - arc nodes .

whereg,..(c) reflects which of the graph pattergsl, N, Q} 22: end for

lc_[ontzi;ifrls ag;oa and the order of precedence usedryz is Fig. 3. Define relation aliases
>N >Q.
define_rel ation_aliases: Map each node in 1: 3b = (a, f) € B(n) > Take any binding ofx

to one or more relation aliases € A according to the 2:
algorithm described in Fig. 3. The algorithm produces maps3:
U,cs — A which links every arc in? to an 4
alias, and mappingst = (Arer, Anode, Ag, Afiiter) Where 5

ping C,

Arel A — Rn Anode A — \I/nodeﬁ Aﬁ A — {H7N79}1 6:
Afiter © A — F) which record relation, node, bind mode,
and a filter condition for each alias. 7:

t r ansf or m Define bindingsB : ¥,,,4.s — B whereB =

{{(a, f

pairs of relation aliases and attributes, such that

<= Jce I"

Calc) = a, Mgz (c,n) = f .

Transform graph pattern into relational query graph
Q = (A, J) where nodes\ are relation aliases defined earlier
and edges] = {<b17b27n) | b, = <a1,f1> € B(TL)J)Q =
(ag, f2) € B(n),a1 # ag} are join conditions. Ground non- |
variable nodes according to the algorithm defined in Fig. 4.

Record list of grounded nodé&s C ¥,,,4.s Such that :

(a, f) € B(n)

neG <nekF,V Ib,byn)eJ |@ id =

4)

V 3b e B(n)3a € Ab € Afiter(a). @ |
Transformation of the example query presented above WI||
result in a relational query graph in Fig. 5.

SE.g. Samizdat usesite-ngresource-id notation for internal resource N
URlrefs.
4M is expected to map reification properties to the triplesetabl

)| a €A, fe ®}} of graph pattern nodes to sets of 8:

if n is an internal resource angdn) = i then

Afilter (a) — Afilter (a)) (b = Z)
else ifn is a query parameter or a literdden

Afilter (a) — Afilter (a)) (b = n)
else ifn is a URIrefthen > Add a join to a URIref tuple
in Resource relation

A — AU {ar}; Anode(ar) = n Arel(ar) =
Resource; Ag(ay) = Bnode(n)

B(n) <« B(n) U {(a,,id(Resource)); J «— J U
{(b, (ar,id(Resource)),n)}

Afilter(ar) = Afilter(ar) U (<ar,lite7’al> =
(ar,uriref) =t A (ar,label) =n)

fA

cend if

Fig. 4. Ground non-variable nodes

Fig. 5. Relational query grap®) for the example query

generate_tabl es_and_condi ti ons: Produce or-
dered connected minimum edge-disjoint tree cavdor rela-
tional query grapl® such thatvP, € P Vj = (b;1,b;2,n;) €
P, Vk= <bk1,bk2,nk> € P;:

K(n;)NK(ng) #0, (5)
ﬁnode(nj) = Bnode (nk) = ﬁtree (R) 5 (6)

1:
2
3
4
5:
6
7
8
9

starting with P, such that3;,..(P1) = II (it follows from ;.
definitions of U andt r ansf or mthat P, is the only such ;.
tree and covers all join condition$,,b»,n) € J such that ..
Brode(n) = II). EncodeP; as the root inner join. Encode other ;5.
trees with at least one edge as subqueries. Left join suleguer, ,.
and aliases representing roots of zero-length trees into jo;s.

for all n € ¥,,4.5 dO

if n is an internal resource angn) = i then
Vin) «i
else ifn is a query parameter or a litertiden
V(n) «—n
else ifn is a variablethen
if fc = (n,p,0) € ¥u,.cs then
> If found only in object position
V(n) < U(n)
else
if n ¢ A then
V(n) < SquishSelect(n, U™*)
end if
if V(n) =0 then
Insertn into Resource relation

expressionF. For eachP; such thatf;,..(P;) = N, find a 4. V(n) — p(n)
bindingb = (a, f) € P; such thata € PN P; and add§1S 4. Ao — Ao UT
NULL) condition toWW. For each non-grounded node¢ G 4. end if

such that(a, f) € B(n) A a € P1, add 6 1S NOT NULL) 4. end if

condition toW if B,54c(n) = II, or (b 1 S NULL) condition else ifn is a URIrefthen

if 5node(”)_= N.Add Fy to W. . 2L Selectn from Resource relation, insert if missing
Translation of the example query presented earlier wil,. V(n) < p(n)
result in the following SQL: 23 end if
SELECT DI STINCT a. subj ect, max(b. publ i shed_dat e) '
24: end for

FROM St at ement AS a
I NNER JO N Resource AS b ON (a.id = b.id)
INNER JO N Resource AS ¢ ON (a.subject = c.id)
INNER JO N Message AS d ON (a.subject = d.id)
INNER JO N Resource AS g ON (a.predicate = g.id)
AND (g.literal = 'false’ AND g.uriref = 'true’
AND g.label = "http://purl.org/dc/elements/1.1/relation’)
LEFT JO N (
SELECT e.l anguage AS _field_b,
FROM Message AS e
INNER JO N Resource ASf ON (f.literal = 'false’
AND f.uriref = "true’ AND f.label =
"http://ww. nongnu. or g/ sani zdat / rdf / schema#i sTransl ati onOf ')
I NNER JO N Resource AS ¢ ON (c.part_of _subproperty = f.id)
AND (c.part_of = e.id)
) AS _subquery_a ON (c.id = _subquery_a._field_a)
WHERE (b. publ i shed_date |'S NOT NULL) 3)
AND (a.object I'S NOT NULL) AND (a.rating |I'S NOT NULL)
AND (c.part_of IS NULL) AND (a.rating >= ?)
AND (d.language = ? OR _subquery_a. _field_b = ?)
GROUP BY a.subject ORDER BY nax(b. published_date) DESC

Fig. 6. Determine node value¥."* is a subgraph oft reachable from.
SquishSelect(n, ¥) finds a mapping of variable that satisfies patterd.

such thatVe = (s,p,0) € ¥2 . 3D,(0) = V(o). If

k € Apew and A, (a) # Resource, transformD,, into

an SQLI NSERT into A,.;(a) with explicit primary key
assignmentdy (A,ei(a)) < V (k). Otherwise, transform
D, into an UPDATE statement on the tuple iAd,;(a)

for which idy (Arei(a)) = V (k).

Execute the SQL statements produced in the previous
stage inside the same transaction in the order that
resolves their mutual references.

c.id AS _field_a

V. UPDATE COMMAND EXECUTION VI. IMPLEMENTATION

Update command uses the same graph pattern structurén€ algorithms described in previous sections are imple-
as a query, and additionally defines a €etc W, 405 Of mented by the Samizdat RDF storage module, which is used
variables representing new RDF resources and a mappf t_he primary means of data_accgss in_the Samizdatopen_ pub-
U : W,oqes — L of variables to literal values. Execution ofliShing system. The module is written in Ruby programming
an update command starts with query pattern translatiolgusl2nguage, supported by several triggers written in proggdu
the algorithm described in section IV. The variables4, Q, SQL. The module and the whole Samizdat engine are available

etc. produced by pattern translation are used in the subseqinder GNU General Public License. o
stages as described below: Samizdat exposes all RDF resources underpinning the struc-

1) Construct node values mappifg : W,oms — L ture and content of the site. HTTP request with a URL of any
using the algorithm defined in Fig. 6. Record resourcé@temal resource yields a page with detailed informatioowa
inserted into the database during this stagehip.,, C the resource and its relation with other resources. Furtbes,

U, 0. (it follows from the algorithm definition that Samizdat provides a graphical interface that allows to cusap
A"é eAS) arbitrary Squish queriesQueries may be published so that

2) For each alias: € A, find a subset of graph patternOther users may modify and reuse them, results of a query
v C o such thatc € wa — Culc)=a may be accessed either as plain HTML or as an RSS feed.

arcs arcs

select a key nodé such thatdc = (k,p,0) € ¥, SComplexity of user queries is limited to a configurable maximnumber

and collect a mapD, : ® — L of fields to values of triples in the graph pattern to prevent abuse.

VII. EVALUATION OF RESULTS explicit grouping of optional graph patterns and the assedi

Samizdat performance was measured using Berlin SPAR(t}llfer scope issues [6].

Benchmark (BSBM) [2], with following variations: a func- 'c?:rmlazrq:;[T)fDFroSg(l)err?n Sdr;(r):;qngeng(rjetrr:g?a?gr?gfggf toa
tional equivalent of BSBM test driver was implemented jpf/ der variety ot p NS. *UeTy >l
Ruby and Squish (instead of Java and SPARQL); the tes&ould be augmented to translate an ambiguously mapped

' uery (including queries with unspecified predicates) to a

platform included Intel Core 2 Duo (instead of Quad) clocked™ AL X . .
at the same frequency, and 2GB of memory (instead of 8G 1on of alternative |nterpr_etat|o_ns. Mapplng of relaibn .
In this environment, Samizdat was able to process 252 c}1ema should be generalized, including support for multi-

: rt keys and more generic stored procedures for reification
complete query mixes per second (QMpH) on a dataset Wgﬁd inference. Standard RDB2RDF mapping should be imple-

1M triples, and achieved 18735 QMpH with 25M triples, in . e
both cases exceeding figures for all RDF stores reported.in [?ented when W3C publishes a specification to that end.

In production, Samizdat was able to serve without conges- X. CONCLUSIONS
tion peak loads of up to 5K hits per hour for a site with The on-demand RDF to relational query translation al-
a dataset sized at 100K triples in a shared VPS environmegdrithm described in this paper utilizes existing relagibn
Regeneration of the site frontpage on the same datasettesecdatabases to their full potential, including indexing,nsa
997 Squish queries and completes in 7.7s, which is comparagttions, and procedural SQL, to provide efficient access to
to RDBMS-backed content management systems. RDF data. Implementation of this algorithm in Samizdat RDF
storage module has been tried in production environment and
demonstrated how Semantic Web technologies can be intro-

As mentioned in section |, there exists a wide range éticed into an application serving thousands of users withou
solutions for relational to RDF mapping. Besides Samizdafposing additional requirements on hardware resources.
the approach based on automatic on-demand translation of
RDF queries into SQL is also implemented by Federate [9], REFERENCES

D2RQ [3]’ and Virtuoso [7] [1] Auer, S., Dietzold, S. Lehman, J., Hellmann, S., AumerlD.: Triplify
. . ; . . — Light-Weight Linked Data Publication from Relational Bbases.
While being one of the first solutions to provide on-demand \y\ 2009, Madrid, Spain (2009)
relational to RDF mapping, Samizdat remains one of the most http://www.informatik.uni-leipzig.def auer/publication/triplify. pdf

advanced in terms of query capabilities. Its single larged@l Bizer. C., Schultz, A.: The Berlin SPARQL Benchmark. dmational
. e . . Journal On Semantic Web and Information Systems (IJSWI&8ynve
drawback is lack of compatibility with SPARQL; in the same 5”5 2 (2009)

time, in some regards it exceeds capabilities of other wwist http:/mww4.wiwiss.fu-berlin.de/bizer/BerlinSPARQIeBchmark/
The alternative that is closest to Samizdat in terms ofél Bizer, C., Seabome, A.: D2RQ - Treating non-RDF databass virtual

e . o RDF graphs. In: ISWC 2004 (posters)
query capabilities is Virtuoso RDF Views: it is the only http://www.wiwiss.fu-berlin.de/bizer/D2RQ/spec/

other relational-to-RDF mapping solution that provides-pa [4] Borodaenko, Dmitry: Accessing Relational Data with RQEeries and
tial RDFS and OWL inference, aggregation, and an update Assertions (April 2004)

. . . http://samizdat.nongnu.org/papers/rel-rdf.pdf
|anguage- Still, there are substantial differences betvieese [5] Borodaenko, Dmitry: Model for Collaborative Decisionaking Based

two projects. First of all, Samizdat RDF store is a small on RDF Reification (April 2004)
module (1000 lines of Ruby and 200 lines of SQL) that http/samizdat.nongnu.org/papers/collreif. pdf

. . . . 6] Cyganiak, R.: A relational algebra for SPARQL. TechhiBaport HPL-
can be used with a variety of RDBMSes, while Virtuoso] 2385_170 HP Labs (2005)9 Q P

RDF Views is tied to its own RDBMS. Virtuoso doesn’t http://www.hpl.hp.com/techreports/2005/HPL-2005- Hil

support implicit statement reification, although its desig [7] Efling, O., Mikhailov I.: RDF support in the Virtuoso DBBL In:
ibl ith this feature. Finally, Virtuso relies on ISQ Proceedings of ‘the 1st Conference on Social _Semantlc Wdbmeo
compatible wi IS Teature. Yy, VIru I P-113 of GI-Edition — Lecture Notes in Informatics (LNI),38l 1617-

unions for queries with unspecified predicates and RDFS and 5468. Bonner Kollen Verlag (2007)
OWL inference. While allowing for greater flexibility than _ http-/ivirtuoso.openiinksw.com/dav/wiki/Main/VOSAsteRDF

. - [8] Miller, Libby, Seaborne, Andy, Reggiori, Alberto: Treelmplementa-
the database triggers described in section lll, iteratin@m tions of SquishQL, a Simple RDF Query Language. In: Horrodks

operation has a considerable impact on query performance. Hendler, J. (Eds) ISWC 2002. LNCS vol. 2342, pp. 423-435irgr,
Heidelberg (2002)
http://ilrt.org/discovery/2001/02/squish/
IX. FUTURE WORK [9] Prud’hommeaux, Eric: RDF Access to Relational Databg@003)
Since the SPARQL Recommendation has been published http://www.w3.0rg/2003/01/21-RDF-RDB-access/

10] Prud’hommeaux, Eric, Seaborne, Andy: SPARQL Querydumge for
by W3C [10], SPARQL support has been at the top of tHe RDF. W3C Recommendation (January 2008)

Samizdat RDF store to-do list. SPARQL syntax is considgrabl http:/mww.w3.org/TR/rdf-spargl-query/

more expressive than Squish and will require some effort fe/] (szré%;g)ro, L., Stockman, G: Computer Vision, pp. 69-78erfice-Hall
|mplement in Sam'Zdajt’ but, since design of the |mp_le|_”nenta— http://iwww.cse.msu.edustockman/Book/2002/Chapters/ch3. pdf
tion separates syntactic layer from the query translatgic| [12] Schmidt, M., Hornung, T., Kiichlin, N., Lausen, G., ki C.: An

the same algorithms as described in this paper can be used Experimental Comparison of RDF Data Management Approashes
| SPAROL SOL with mini | ch SPARQL Benchmark Scenario. In: A. Sheth et al. (Eds.) ISWQ820
to translate QL patterns to SQL with minimal changes. | ncs Vol 5318, pp. 82-97. Springer, Heidelberg (2008)

Most substantial changes are expected to be required for the http:/mww.informatik.uni-freiburg.de/ mschmidt/docs/sp2kexp.pdf

VIIl. COMPARISON WITHRELATED WORK

http://www.informatik.uni-leipzig.de/~auer/publication/triplify.pdf
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/
http://www.wiwiss.fu-berlin.de/bizer/D2RQ/spec/
http://samizdat.nongnu.org/papers/rel-rdf.pdf
http://samizdat.nongnu.org/papers/collreif.pdf
http://www.hpl.hp.com/techreports/2005/HPL-2005-170.html
http://virtuoso.openlinksw.com/dav/wiki/Main/VOSArticleRDF
http://ilrt.org/discovery/2001/02/squish/
http://www.w3.org/2003/01/21-RDF-RDB-access/
http://www.w3.org/TR/rdf-sparql-query/
http://www.cse.msu.edu/~stockman/Book/2002/Chapters/ch3.pdf
http://www.informatik.uni-freiburg.de/~mschmidt/docs/sp2b_exp.pdf

	Introduction
	Relational Data
	Inference and Database Triggers
	Query Pattern Translation
	Update Command Execution
	Implementation
	Evaluation of Results
	Comparison with Related Work
	Future Work
	Conclusions
	References

